- MESH MULTIPLICATION PACKAGE INTO
"N\CODE_SATURNE AND ACHIEVED RESULTS

A. Ronovsky, P. Kabelikova, V. Vondrak, C. Moulinec

Paris - Chatou, France

0.4.2013
Code_Saturne user meeting 2013

Contents

* Motivation
* Preprocessing

 Mesh
Multiplication

e Results
* Perspectives

How to achieve exascale

. -> Peta -> Exa

PRACE, EDF + STFC + IT4l
Real complex problem
~ully defined

Test case: LES in staggered distributed tube
bundles

Architecture

Solver -> Code_Saturne

Large mesh (3D) — mesh generators?
Post-processing

Visualization

Mesh Multiplication - Overview

— Working with mesh of Billion cells
— Create or load such a mesh is very expensive

— Global refinement

— Existing coarse mesh suitable for CFD simulations,
changing size by subdivision of each cell

— Creating very fine mesh, much lesser time of loading and
partitioning

— higher accuracy of the solution is attained

— 13 million cell mesh to 6.6 Billion — 10 time steps
— 51 million cell mesh to 26 Billion — 1 time step

— Code_Saturne is able to solve that large problem

Mesh Multiplication - Connectivity

Several methods of subdivision |
Different behaviour of refinement i ﬁ %‘@ %

for hexahedra, tetrahedra, prism or

pyramid cells
Edge midpoints subdivision Q %@ Z%

Global connectivity ensured
Cheap way of indices computation

No unnecessary core-to-core
communication

Reasonable times of refinement due
to the time of whole simulation

Lot of computational time saved =
lot of resources saved for solver

MM and cs solver.c

Initialization (global structures)

Define mesh to read

Define joining and periodicity

Set partitioning options

Read preprocessor output

Mesh Multiplication

Mesh joining

Initialize extended connectivity, ghost cells, halo
Other mesh modifications (geometry, smoothing)
Save mesh and discard all temporary structures

Main computation

Renumbering of a mesh, group classes, quantities, ...

Mesh Multiplication - Algorithm

Input: coarse mesh
Pre-processing:
— Create edge local/global numbering,
— Create faces to edge connectivity,
— Define cells.
Refinement:
— Create new vertices on edges, on border and interior rectangular faces,
— Refine all faces that inherit family and group from parent.

Cell refinement:
Preparation:
— Create new vertex in the centre of gravity of the hexahedral cell,
— Order faces of the cell to ensure positiveness of normal vectors,
— Prepare indices of vertices.
Cell subdivision:
— Refine the cell,
— Create new interior faces,
— Assign proper face to cell connectivity to each new face and cell.

Output: refined mesh.

Mesh Multiplication - Indexation

9751- Vertices
a - From coarse mesh keep indices

— Edge vertex: n_vertices + edge_idx

— Rectangular face vertex: n_vertices + n_edges + face_idx

— Hexa cell vertex: n_vertices + n_edges + n_faces + cell _idx
* Faces

— Every face refined into 4

— Refined face: 4*(face idx-1)+ 1:4

— New face (cell subdivision): 4*n_faces + T*(cell idx-1) + 1:T
— T —depends on mesh (12 for hexa, tetra, 10 for prism,...)

e Cells

— New cell: T*(cell idx-1) + 1:T

— T —depends on mesh (8 for hexa, tetra, prism, ...)

- Results

e Different cases

e Different architectures

e Mesh of 51 million cells
 Refined to 26 Billion on 65k cores
* 1timestep C_S—12288 MPI + 8 OpenMP = ~500s

Level of MM: 0 I 2 3
Parameters cells SIM 409M | 3.3B 268
of i border faces || 1.7TM 6.7M 2™ 108M
eiven mesh ke interior faces | 153M | 1.2B 9.8B 18B
vertices 52M 413M | 3.3B 268
16K cores time [s] - 2.0(4k) | 4.13 23.7
cells per core | 3k 100K 200k 1.6M
Number 39k cores time [s] - 1.89(8k) 3.5 14.5
of o - | cells per core | 1.5k S0k 100k 800k
cores 65k cores time [s] - 1.2(16k 2_.79 -
) - | cells per core || 800 25Kk 50k 400k

- Scalability

2 \ Scalability B i e g A
20 N 3,3B(51M-2levels
* Good scalability up SN
tO 65k CO res 315 A\ >\ X =>é=13B(26N-3levels)
* MM takes just a \\\\\ B
fraction of time due * e —=
to whole :

0 10000 20000 30000 40000 50000 60000 70000

Computation number of cores

e MM of coarser mesh
Is much cheaper
then creating and
loading fine mesh

Perspectives

* CSs_user_mesh
— Pyramids and prisms — hybrid meshes
— Option of mesh multiplication for every C_S user (0-default)

» Adaptive refinement
— Global refinement adaptive to geometry

\

— Local refinement based on a priori (geometry,...) and a
posteriori (gradient, error, ...) estimates

— Remeshing, demeshing

— Floating parts of a mesh, changing size, shape
Polyhedral meshes

— Global/ adaptive refinement of general polyhedral mesh

THANK YOU

